Part Number Hot Search : 
FSDM0565 KSR2012 MAX32 WR5104 12401 12756 ER801AF EPS13D2
Product Description
Full Text Search
 

To Download 39A126 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  ds04-27248-1e fujitsu semiconductor data sheet assp for power supply applications (secondary battery) dc/dc converter ic for charging li-ion battery mb39a125/126 description mb39a125/126 is a dc/dc converter ic for charging li-i on battery, which is suitable for down-conversion, and uses pulse width modulation (pwm) for controlling the out put voltage and current inde pendently. this ic integrates the build-in comparator for the voltage detection of the ac adapter, and selects the ac adapter or battery auto- matically for power supply to the system. provides a wide range of power supply voltage, low standb y current, and high efficiency, which makes them ideal as a built-in charging device in products such as notebook pc. features ? high efficiency : 97 % (max)  built-in two constant current control circuits  analog control of the charging current value ( + ine1, + ine2 terminal)  built-in ac adapter voltage detection function (acok, xacok terminal) (continued) packages 24-pin plastic ssop 28-pin plastic qfn (fpt-24p-m03) (lcc-28p-m11) www.datasheet.co.kr datasheet pdf - http://www..net/
mb39a125/126 2 (continued) ? external output voltage se tting resistor : mb39a125  built-in output voltage setting resistor : mb39A126  built-in charge stop function at low vcc  output voltage setting accuracy : 0.74 % (ta = ? 10 c to + 85 c) : mb39a125 : 12.6 v/16.8 v 0.8 % (ta = ? 10 c to + 85 c) : mb39A126  built-in high accuracy current detection amplifier ( 5 % ) (at input voltage difference 100 mv) , ( 15 % ) (at input voltage difference 20 mv)  in ic standby mode (icc = 0 a typ) , make output voltage setting resistor open to prevent inefficient current loss  built-in soft-start circuit  standby current : 0 a (typ)  totem-pole type output for pch mos fet www.datasheet.co.kr datasheet pdf - http://www..net/
mb39a125/126 3 pin assignments ? mb39a125 (continued) (top view) (fpt-24p-m03) ? inc2 1 24 + inc2 o utc2 2 23 gnd + ine2 3 22 cs ? ine2 4 21 vcc acok 5 20 out vref 6 19 vh acin 7 18 xaco k ? ine1 8 17 rt + ine1 9 16 ? ine3 o utc1 1 0 15 fb123 outd 11 14 ctl ? inc1 1 2 13 + inc1 www.datasheet.co.kr datasheet pdf - http://www..net/
mb39a125/126 4 (continued) (top view) (lcc-28p-m11) note : connect ic?s radiation board at bottom side to potential of gnd. cs vcc out vh xaco k rt ? ine3 28 27 26 25 24 23 22 n.c. 1 21 fb12 3 gnd 2 20 ctl + inc2 3 19 + inc 1 n.c. 4 18 n.c. ? inc2 5 17 ? inc 1 o utc2 6 16 out d + ine2 715 n.c. 8 9 10 11 12 13 14 ? ine2 acok vref acin ? ine1 + ine1 o utc1 www.datasheet.co.kr datasheet pdf - http://www..net/
mb39a125/126 5 ? mb39A126 (continued) (top view) (fpt-24p-m03) ? inc2 124 + inc2 o utc2 223 gnd + ine2 322 cs ? ine2 421 vcc acok 520 out vref 619 vh acin 718 xaco k ? ine1 817 rt + ine1 916 ? ine3 o utc1 10 15 fb123 sel 11 14 ctl ? inc1 12 13 + inc1 www.datasheet.co.kr datasheet pdf - http://www..net/
mb39a125/126 6 (continued) (top view) (lcc-28p-m11) note : connect ic?s radiation board at bottom side to potential of gnd. cs vcc out vh xaco k rt ? ine3 28 27 26 25 24 23 22 n.c. 121 fb12 3 gnd 220 ctl + inc2 319 + inc 1 n.c. 418 n.c. ? inc2 517 ? inc 1 o utc2 616 sel + ine2 715 n.c. 8 9 10 11 12 13 14 ? ine2 acok vref acin ? ine1 + ine1 o utc1 www.datasheet.co.kr datasheet pdf - http://www..net/
mb39a125/126 7 pin descriptions ? mb39a125 : ssop-24 pin no. pin name i/o description 1 ? inc2 i current detection amplifier (cu rrent amp2) inverted input terminal 2 outc2 o current detection amplifier (current amp2) output terminal 3 + ine2 i error amplifier (error amp2) non-inverted input terminal 4 ? ine2 i error amplifier (error amp2) inverted input terminal 5acoko ac adapter voltage detection bl ock (ac comp.) output terminal acok = l when acin = h, acok = hi-z when acin = l, acok = hi-z when ctl = l 6 vref o reference voltage output terminal 7 acin i ac adapter voltage detection block (ac comp.) input terminal 8 ? ine1 i error amplifier (error amp1) inverted input terminal 9 + ine1 i error amplifier (error amp1) non-inverted input terminal 10 outc1 o current detection amplifier (current amp1) output terminal 11 outd o when ic is standby mode, this terminal is set to ?hi-z? to prevent loss of inefficient current through t he output voltage setting resistor. set ctl terminal to ?h? level to output ?l? level. 12 ? inc1 i current detection amplifier (cu rrent amp1) inverted input terminal 13 + inc1 i current detection amplifier (current amp1) non-inverted input terminal 14 ctl i power supply control terminal setting the ctl terminal at ?l? le vel places the ic in the standby mode. 15 fb123 o error amplifier (error amp1, 2, 3) output terminal 16 ? ine3 i error amplifier (error amp3) inverted input terminal 17 rt ? triangular wave oscillation frequency setting resistor connection terminal 18 xacok o ac adapter voltage detection bloc k ( ac comp.) output terminal xacok = hi-z when acin = h, xacok = l when acin = l, xacok = hi-z when ctl = l 19 vh o power supply terminal for fet drive circuit (vh = vcc ? 6 v) 20 out o external fet gate drive terminal 21 vcc ? power supply terminal for reference vo ltage, control circuit, and output cir- cuit 22 cs ? soft-start setting capacitor connection terminal 23 gnd ? ground terminal 24 + inc2 i current detection amplifier (current amp2) non-inverted input terminal www.datasheet.co.kr datasheet pdf - http://www..net/
mb39a125/126 8 ? mb39a125 : qfn-28 pin no. pin name i/o description 1n.c. ? no connection 2gnd ? ground terminal 3 + inc2 i current detection amplifier (current amp2) non-inverted input terminal 4n.c. ? no connection 5 ? inc2 i current detection amplifier (cu rrent amp2) inverted input terminal 6 outc2 o current detection amplifier (current amp2) output terminal 7 + ine2 i error amplifier (error amp2) non-inverted input terminal 8 ? ine2 i error amplifier (error amp2) inverted input terminal 9acoko ac adapter voltage detection bl ock (ac comp.) output terminal acok = l when acin = h, acok = hi-z when acin = l, acok = hi-z when ctl = l 10 vref o reference voltage output terminal 11 acin i ac adapter voltage detection block (ac comp.) input terminal 12 ? ine1 i error amplifier (error amp1) inverted input terminal 13 + ine1 i error amplifier (error amp1) non-inverted input terminal 14 outc1 o current detection amplifier (current amp1) output terminal 15 n.c. ? no connection 16 outd o when ic is standby mode, this terminal is set to ?hi-z? to prevent loss of inefficient current through t he output voltage setting resistor. set ctl terminal to ?h? level to output ?l? level. 17 ? inc1 i current detection amplifier (cu rrent amp1) inverted input terminal 18 n.c. ? no connection 19 + inc1 i current detection amplifier (cu rrent amp1) non-inverted input terminal 20 ctl i power supply control terminal setting the ctl terminal at ?l? le vel places the ic in the standby mode. 21 fb123 o error amplifier (error amp1, 2, 3) output terminal 22 ? ine3 i error amplifier (error amp3) inverted input terminal 23 rt ? triangular wave oscillation frequency setting resistor connection terminal 24 xacok o ac adapter voltage detection bloc k ( ac comp.) output terminal xacok = hi-z when acin = h, xacok = l when acin = l, xacok = hi-z when ctl = l 25 vh o power supply terminal for fet drive circuit (vh = vcc - 6 v) 26 out o external fet gate drive terminal 27 vcc ? power supply terminal for reference volt age, control circuit, and output cir- cuit 28 cs ? soft-start setting capacitor connection terminal www.datasheet.co.kr datasheet pdf - http://www..net/
mb39a125/126 9 ? mb39A126 : ssop-24 pin no. pin name i/o description 1 ? inc2 i current detection amplifier (cu rrent amp2) inverted input terminal 2 outc2 o current detection amplifier (current amp2) output terminal 3 + ine2 i error amplifier (error amp2) non-inverted input terminal 4 ? ine2 i error amplifier (error amp2) inverted input terminal 5acoko ac adapter voltage detection bl ock (ac comp.) output terminal acok = l when acin = h, acok = hi-z when acin = l, acok = hi-z when ctl = l 6 vref o reference voltage output terminal 7 acin i ac adapter voltage detection block (ac comp.) input terminal 8 ? ine1 i error amplifier (error amp1) inverted input terminal 9 + ine1 i error amplifier (error amp1) non-inverted input terminal 10 outc1 o current detection amplifier (current amp1) output terminal 11 sel i charge voltage setting switch terminal (3cells or 4cells) sel terminal ?h? level : char ge voltage setting 16.8 v (4cells) sel terminal ?l? level : char ge voltage setting 12.6 v (3cells) 12 ? inc1 i current detection amplifier (cu rrent amp1) inverted input terminal 13 + inc1 i current detection amplifier (cu rrent amp1) non-inverted input terminal 14 ctl i power supply control terminal setting the ctl terminal at ?l? level places the ic in the standby mode. 15 fb123 o error amplifier (error amp1, 2, 3) output terminal 16 ? ine3 i error amplifier (error amp3) inverted input terminal 17 rt ? triangular wave oscillation frequency setting resistor connection terminal 18 xacok o ac adapter voltage detection bloc k ( ac comp.) output terminal xacok = hi-z when acin = h, xacok = l when acin = l, xacok = hi-z when ctl = l 19 vh o power supply terminal for fet drive circuit (vh = vcc - 6 v) 20 out o external fet gate drive terminal 21 vcc ? power supply terminal for reference volt age, control circuit, and output cir- cuit 22 cs ? soft-start setting capacitor connection terminal 23 gnd ? ground terminal 24 + inc2 i current detection amplifier (cu rrent amp2) non-inverted input terminal www.datasheet.co.kr datasheet pdf - http://www..net/
mb39a125/126 10 ? mb39A126 : qfn-28 pin no. pin name i/o description 1n.c. ? no connection 2gnd ? ground terminal 3 + inc2 i current detection amplifier (cu rrent amp2) non-inverted input terminal 4n.c. ? no connection 5 ? inc2 i current detection amplifier (c urrent amp2) inverted input terminal 6 outc2 o current detection amplifie r (current amp2) output terminal 7 + ine2 i error amplifier (error amp2) non-inverted input terminal 8 ? ine2 i error amplifier (error amp2) inverted input terminal 9acoko ac adapter voltage detection bl ock (ac comp.) output terminal acok = l when acin = h, ac ok = hi-z when acin = l, acok = hi-z when ctl = l 10 vref o reference voltage output terminal 11 acin i ac adapter voltage detection block (ac comp.) input terminal 12 ? ine1 i error amplifier (error amp1) inverted input terminal 13 + ine1 i error amplifier (error amp1) non-inverted input terminal 14 outc1 o current detection amplifie r (current amp1) output terminal 15 n.c. ? no connection 16 sel i charge voltage setting switch te rminal (3cells or 4cells) . sel terminal ?h? level : char ge voltage setting 16.8 v (4cells) sel terminal ?l? level : charge voltage setting 12.6 v (3cells) 17 ? inc1 i current detection amplifier (c urrent amp1) inverted input terminal 18 n.c. ? no connection 19 + inc1 i current detection amplifier (cu rrent amp1) non-inverted input terminal 20 ctl i power supply control terminal setting the ctl terminal at ?l? le vel places the ic in the standby mode. 21 fb123 o error amplifier (error amp1, 2, 3) output terminal 22 ? ine3 i error amplifier (error amp3) inverted input terminal 23 rt ? triangular wave oscillation frequency setting resistor connection terminal 24 xacok o ac adapter voltage detection bl ock ( ac comp.) output terminal xacok = hi-z when acin = h, xacok = l when acin = l, xacok = hi-z when ctl = l 25 vh o power supply terminal for fet drive circuit (vh = vcc - 6 v) 26 out o external fet gate drive terminal 27 vcc ? power supply terminal for reference volt age, control circuit, and output cir- cuit 28 cs ? soft-start setting capacitor connection terminal www.datasheet.co.kr datasheet pdf - http://www..net/
mb39a125/126 11 block diagrams ? mb39a125 21 20 19 14 23 6 17 22 11 16 15 3 1 24 2 4 9 12 13 10 8 7 5 18 ? ine1 (vcc ? 6 v) 4.2 v < soft> 500 k hz max vref 5.0 v 10 a c t (45 pf) 4.2 v bias vref uvlo drive bias voltage vh ? 2.5 v ? 1.5 v vref vref 1.4 v vcc o utc1 + inc1 ? inc1 + ine1 ? ine2 o utc2 + inc2 ? inc2 + ine2 fb123 ? ine3 outd cs rt vref gnd ct l vh ou t vc c acok acin 0.2 v ? inc1 (vo) xacok slope control ? + ? + ? + + ? + ? + ? + ? + ? 20 20 www.datasheet.co.kr datasheet pdf - http://www..net/
mb39a125/126 12 ? mb39A126 ? ine1 4.2 v/3.15 v < soft> 500 k hz max vref 5.0 v 10 a c t (45 pf) 4.2 v bias vref uvlo drive bias voltage vh vref vref 1.4 v vcc outc1 + inc1 ? inc1 + ine1 ? ine2 outc2 + inc2 ? inc2 + ine2 fb123 ? ine3 sel cs rt vref gnd ct l vh ou t vc c acok acin 0.2 v ? inc1 (vo) xacok slope control ? + ? + ? + + ? + ? + ? + ? + ? 20 20 r1 r2 21 20 19 14 23 6 17 22 11 16 15 3 1 24 2 4 9 12 13 10 8 7 5 18 (vcc ? 6 v) ? 2.5 v ? 1.5 v h i : 4 cells l o : 3 cells www.datasheet.co.kr datasheet pdf - http://www..net/
mb39a125/126 13 absolute maximum ratings *1 : when mounted on a 10cm square epoxy double-sided. *2 : the packages are mounted on the dual-sided epoxy board (10 cm 10 cm) . connect ic?s radiation board at bottom side to potential of gnd. warning: semiconductor devices can be permanently dam aged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. do not exceed these ratings. parameter symbol condition rating unit min max power supply voltage v cc vcc terminal ? 28 v output current i out ?? 60 ma peak output current i out duty 5 % (t = 1 / fosc duty) ? 700 ma power dissipation p d ta + 25 c (ssop-24) ? 740* 1 mw ta + 25 c (qfn-28) ? 3700* 2 mw storage temperature t stg ?? 55 + 125 c www.datasheet.co.kr datasheet pdf - http://www..net/
mb39a125/126 14 recommended operation conditions note : the terminal number which has been described in the text is the on e of the ssop-24p package after this. warning: the recommended operating conditions are require d in order to ensure the normal operation of the semiconductor device. all of the device?s electric al characteristics are warranted when the device is operated within these ranges. always use semiconductor devices within their recommended operating cond ition ranges. operation outside these ranges may adversely affect re liability and could result in device failure. no warranty is made with respect to uses, operat ing conditions, or combinations not represented on the data sheet. users considering application outside the listed conditions are advised to contact their fujitsu representatives beforehand. parameter symbol condition value unit min typ max power supply voltage v cc vcc terminal 8 ? 25 v reference voltage output current i ref ?? 1 ? 0ma vh terminal output current i vh ? 0 ? 30 ma input voltage v ine + ine, ? ine terminal 0 ? 5v v inc + inc, ? inc terminal 0 ? v cc v ctl terminal input voltage v ctl ? 0 ? 25 v output current i out ?? 45 ? +45 ma peak output current i out duty 5 % (t = 1 / fosc duty) ? 600 ? +600 ma acin terminal input voltage v acin ? 0 ? v cc v acok terminal output voltage v acok ? 0 ? 25 v acok terminal output current i acok ? 0 ? 1ma xacok terminal output voltage v xacok ? 0 ? 25 v xacok terminal output current i xacok ? 0 ? 1ma outd terminal output voltage : mb39a125 v outd ? 0 ? 17 v outd terminal output current : mb39a125 i outd ? 0 ? 2ma sel terminal input voltage : mb39A126 v sel ? 0 ? 25 v oscillation frequency f osc ? 100 300 500 khz timing resistor r t ? 27 47 130 k ? soft-start capacitor c s ?? 0.22 1.0 f vh terminal capacitor c vh ?? 0.1 1.0 f reference voltage output capacitor c ref ?? 0.22 1.0 f operating ambient temperature ta ?? 30 + 25 + 85 c www.datasheet.co.kr datasheet pdf - http://www..net/
mb39a125/126 15 electrical characteristics (vcc = 19 v, vref = 0 ma, ta = + 25 c) * : standard design value (continued) parameter sym- bol pin no. condition value unit remarks min typ max 1. reference voltage block [ref] output voltage v ref1 6ta = + 25 c 4.963 5.000 5.037 v mb39a125 v ref2 6ta = ? 10 c to + 85 c 4.95 5.000 5.05 v mb39a125 v ref1 6ta = + 25 c 4.943 4.980 5.017 v mb39A126 v ref2 6ta = ? 10 c to + 85 c 4.930 4.980 5.030 v mb39A126 input stability line 6 vcc = 8 v to 25 v ? 310mv load stability load 6 vref = 0 ma to ? 1 ma ? 110mv output current at short circuit ios 6 vref = 1 v ? 50 ? 25 ? 12 ma 2. under voltage lockout protection circuit block [uvlo] threshold voltage v tlh 6vref = 2.6 2.8 3.0 v v thl 6vref = 2.4 2.6 2.8 v hysteresis width v h 6 ?? 0.2* ? v 3. soft start block [soft] charge current i cs 22 ?? 14 ? 10 ? 6 a 4. triangular wave oscillator block [osc] oscillation frequency f osc 20 rt = 47 k ? 270 300 330 khz frequency temperature stability ? f/fdt 20 ta = ? 30 c to + 85 c ? 1* ?% 5-1. error amplifier block [error amp1, error amp2] input offset voltage v io 3, 4, 8, 9 fb123 = 2 v ? 15mv input bias current i b 3, 4, 8, 9 ?? 100 ? 30 ? na common mode input voltage range v cm 3, 4, 8, 9 ? 0 ? 5v voltage gain av 15 dc ? 100* ? db frequency bandwidth bw 15 av = 0 db ? 1.3* ? mhz output voltage v fbh 15 ? 4.8 5.0 ? v v fbl 15 ?? 0.8 0.9 v output source current i source 15 fb123 = 2 v ?? 120 ? 60 a output sink current i sink 15 fb123 = 2 v 2.0 4.0 ? ma www.datasheet.co.kr datasheet pdf - http://www..net/
mb39a125/126 16 (vcc = 19 v, vref = 0 ma, ta = + 25 c) * : standard design value (continued) parameter sym- bol pin no. condition value unit remarks min typ max 5-2. error amplifier block [error amp3] input current i ine 16 ? ine3 = 0 v ? 100 ? 30 ? na mb39a125 voltage gain av 15 dc ? 100* ? db frequency bandwidth bw 15 av = 0 db ? 1.3* ? mhz output voltage v fbh 15 ? 4.8 5.0 ? v v fbl 15 ?? 0.8 0.9 v output source current i source 15 fb123 = 2 v ?? 120 ? 60 a output sink current i sink 15 fb123 = 2 v 2.0 4.0 ? ma threshold voltage v th1 16 fb123 = 2 v, ta = + 25 c 4.179 4.200 4.220 v mb39a125 v th2 16 fb123 = 2 v, ta = ? 10 c to + 85 c 4.169 4.200 4.231 v mb39a125 v th3 12 sel = 5 v, fb123 = 2 v, ta = + 25 c 16.700 16.800 16.900 v mb39A126 v th4 12 sel = 5 v, fb123 = 2 v, ta = ? 10 c to + 85 c 16.666 16.800 16.934 v mb39A126 v th5 12 sel = 0 v, fb123 = 2 v, ta = + 25 c 12.525 12.600 12.675 v mb39A126 v th6 12 sel = 0 v, fb123 = 2 v, ta = ? 10 c to + 85 c 12.500 12.600 12.700 v mb39A126 outd terminal output leak current i leak 11 outd = 17 v ? 01 a mb39a125 outd terminal output on resistance r on 11 outd = 1 ma ? 35 50 ? mb39a125 input current i in 12 ? inc1 = 16.8 v ? 84 150 a mb39A126 input resistance r1 12, 16 ? 105 150 195 k ? mb39A126 r2 16 ? 35 50 65 k ? mb39A126 www.datasheet.co.kr datasheet pdf - http://www..net/
mb39a125/126 17 (vcc = 19 v, vref = 0 ma, ta = + 25 c) (continued) parameter sym- bol pin no. condition value unit remarks min typ max 5-2. error amplifier block [error amp3] sel input voltage v on 11 error amp3 reference voltage = 4.2 v (4-cell setting) 2 ? 25 v mb39A126 v off 11 error amp3 reference voltage = 3.15 v (3-cell setting) 0 ? 0.8 v mb39A126 input current i selh 11 sel = 5 v ? 50 100 a mb39A126 i sell 11 sel = 0 v ? 01 a mb39A126 6. current detection amplifier b l o c k [current amp1, current amp2] input offset voltage v io 1, 12, 13, 24 + inc1 = + inc2 = ? inc1 = ? inc2 = 3 v to vcc ? 3 ? +3 mv input current i + inch 13, 24 + inc1 = + inc2 = 3 v to vcc, ? v in = ? 100 mv ? 20 30 a i- inch 1, 12 + inc1 = + inc2 = 3 v to vcc, ? v in = ? 100 mv ? 0.1 0.2 a mb39a125 1 + inc1 = + inc2 = 3 v to vcc, ? v in = ? 100 mv ? 0.1 0.2 a mb39A126 i + incl 13, 24 + inc1 = + inc2 = 0 v, ? v in = ? 100 mv ? 180 ? 120 ? a i- incl 1, 12 + inc1 = + inc2 = 0 v, ? v in = ? 100 mv ? 195 ? 130 ? a current detection voltage v outc1 2, 10 + inc1 = + inc2 = 3 v to vcc, ? v in = ? 100 mv 1.9 2.0 2.1 v v outc2 2, 10 + inc1 = + inc2 = 3 v to vcc, ? v in = ? 20 mv 0.34 0.40 0.46 v v outc3 2, 10 + inc1 = + inc2 = 0 v, ? v in = ? 100 mv 1.8 2.0 2.2 v v outc4 2, 10 + inc1 = + inc2 = 0 v, ? v in = ? 20 mv 0.2 0.4 0.6 v common mode input voltage range v cm 1, 12, 13, 24 ? 0 ? v cc v voltage gain av 2, 10 + inc1 = + inc2 = 3 v to vcc, ? v in = ? 100 mv 19 20 21 v/v www.datasheet.co.kr datasheet pdf - http://www..net/
mb39a125/126 18 (vcc = 19 v, vref = 0 ma, ta = + 25 c) * : standard design value (continued) parameter sym- bol pin no. condition value unit re- marks min typ max 6. current detection amplifier block [current amp1, current amp2] frequency bandwidth bw 2, 10 av = 0 db ? 2* ? mhz output voltage v outch 2, 10 ? 4.7 4.9 ? v v outcl 2, 10 ?? 20 200 mv output source cur- rent i source 2, 10 outc1 = outc2 = 2 v ?? 2 ? 1ma output sink current i sink 2, 10 outc1 = outc2 = 2 v 150 300 ? a 7. pwm comp. block [pwm comp.] threshold voltage v tl 15 duty cycle = 0 % 1.4 1.5 ? v v th 15 duty cycle = 100 %? 2.5 2.6 v 8. output block [out] output source cur- rent i source 20 out = 13 v, duty 5 % (t = 1 / fosc duty) ?? 400* ? ma output sink current i sink 20 out = 19 v, duty 5 % (t = 1 / fosc duty) ? 400* ? ma output on resistance r oh 20 out = ? 45 ma ? 6.5 9.8 ? r ol 20 out = 45 ma ? 5.0 7.5 ? rise time tr1 20 out = 3300 pf ? 50* ? ns fall time tf1 20 out = 3300 pf ? 50* ? ns 9. low input voltage detection block [uv comp.] threshold voltage v tlh 21 vcc = , ? inc1 = 16.8 v 17.2 17.4 17.6 v v thl 21 vcc = , ? inc1 = 16.8 v 16.8 17.0 17.2 v hysteresis width v h 21 ?? 0.4* ? v 10. ac adapter voltage detection block [ac comp.] threshold voltage v tlh 7 acin = 1.3 1.4 1.5 v v thl 7 acin = 1.2 1.3 1.4 v hysteresis width v h 7 ?? 0.1* ? v www.datasheet.co.kr datasheet pdf - http://www..net/
mb39a125/126 19 (continued) (vcc = 19 v, vref = 0 ma, ta = + 25 c) * : standard design value parameter sym- bol pin no. condition value unit re- marks min typ max 10. ac adapter voltage detection block [ac comp.] acok terminal output leak current i leak 5acok = 25 v ? 01 a acok terminal output on resistance r on 5acok = 1 ma ? 200 400 ? xacok terminal output leak current i leak 18 xacok = 25 v ? 01 a xacok terminal output on resistance r on 18 xacok = 1 ma ? 200 400 ? 11. power supply control block [ctl] ctl input voltage v on 14 ic operation mode 2 ? 25 v v off 14 ic standby mode 0 ? 0.8 v input current i ctlh 14 ctl = 5 v ? 100 150 a i ctll 14 ctl = 0 v ? 01 a 12. bias voltage block [vh] output voltage v h 19 vcc = 8 v to 25 v, vh = 0 ma to 30 ma v cc ? 6.5 v cc ? 6.0 v cc ? 5.5 v 13. general standby current i ccs 21 ctl = 0 v ? 010 a power supply current i cc 21 ctl = 5 v ? 57.5ma www.datasheet.co.kr datasheet pdf - http://www..net/
mb39a125/126 20 typical characteristics (continued) 6 5 4 3 2 1 0 0 5 10 15 20 2 5 ta = + 25 c ctl = 5 v 0 100 200 300 400 500 600 700 800 900 1 000 0 5 10 15 20 25 0 1 2 3 4 5 6 7 8 9 1 0 ta = + 25 c vcc = 19 v vref = 0 ma v ref i ctl 6 5 4 3 2 1 0 0 5 10 15 20 2 5 ta = + 25 c ctl = 5 v vref = 0 ma 0 1 2 3 4 5 6 0 5 10 15 20 25 30 3 5 ta = + 25 c vcc = 19 v ctl = 5 v 4 .92 4 .94 4 .96 4 .98 5 .00 5 .02 5 .04 5 .06 5 .08 ? 40 ? 20 0 20 40 60 80 10 0 vcc = 19 v ctl = 5 v vref = 0 ma 2 60 2 70 2 80 2 90 3 00 3 10 3 20 3 30 3 40 0 5 10 15 20 2 5 ta = + 25 c ctl = 5 v rt = 47 k ? power supply current vs. power supply voltage power supply voltage v cc (v) power supply current icc (ma) ctl terminal input current, reference voltage vs. ctl terminal input voltage ctl terminal input voltage v ctl (v) ctl terminal input current i ctl ( a) reference voltage v ref (v) reference voltage vs. power supply voltage power supply voltage v cc (v) reference voltage v ref (v) reference voltage vs. load current load current i ref (ma) reference voltage v ref (v) reference voltage vs. operating ambient temperature operating ambient temperature ta ( c) reference voltage v ref (v) triangular wave oscillation frequency vs. power supply voltage power supply voltage v cc (v) triangular wave oscillation frequency fosc (khz) www.datasheet.co.kr datasheet pdf - http://www..net/
mb39a125/126 21 (continued) 2 60 2 70 2 80 2 90 3 00 3 10 3 20 3 30 3 40 ? 40 ? 20 0 20 40 60 80 10 0 vcc = 19 v ctl = 5 v rt = 47 k ? 10 100 1 000 10 100 100 0 ta = + 25 c vcc = 19 v ctl = 5 v ? 40 4 .12 4 .14 4 .16 4 .18 4 .20 4 .22 4 .24 4 .26 4 .28 ? 20 0 20 40 60 80 10 0 vcc = 19 v ctl = 5 v vref = 0 ma 1 6.70 1 6.75 1 6.80 1 6.85 1 6.90 ? 40 ? 20 0 20 40 60 80 10 0 vcc = 19 v ctl = 5 v sel = 5 v 1 2.50 1 2.55 1 2.60 1 2.65 1 2.70 ? 40 ? 20 0 20 40 60 80 10 0 vcc = 19 v ctl = 5 v sel = 0 v triangular wave oscillation frequency vs. operating ambient temperature operating ambient temperature ta ( c) triangular wave oscillation frequency fosc (khz) triangular wave oscillation frequency vs. timing resistor timing resistor r t (k ? ) triangular wave oscillation frequency fosc (khz) error amplifier threshold voltage vs. operating ambient temperature operating ambient temperature ta ( c) error amplifier threshold voltage v th (v) 39A126> error amplifier threshold voltage vs. operating ambient temperature operating ambient temperature ta ( c) error amplifier threshold voltage v th (v) error amplifier threshold voltage vs. operating ambient temperature operating ambient temperature ta ( c) error amplifier threshold voltage v th (v) www.datasheet.co.kr datasheet pdf - http://www..net/
mb39a125/126 22 (continued) ? + vcc = 19 v 100 1k 10k 100k 1m 10m ? 180 ? 90 0 90 180 40 30 20 10 ? 10 ? 20 ? 30 ? 40 0 av ta = + 25 c vcc = 19 v error amp1 (error amp2) in ou t 1 f + 10 k ? 10 k ? 10 k ? 10 k ? 2.4 k ? 240 k ? 4.2 v (4) (3) 8 9 15 fb123 ? ine1, 2 + ine1, 2 ? + ? 180 ? 90 0 90 180 40 30 20 10 ? 10 ? 20 ? 30 ? 40 0 10 k ? 10 k ? 100 1k 10k 100k 1m 10m av in ou t 1 f + 2.4 k ? 240 k ? 4.2 v error amp3 16 15 ta = + 25 c vcc = 19 v fb123 ? ine3 + ? 40 30 20 10 ? 10 ? 20 ? 30 ? 40 0 ? 180 ? 90 0 90 180 100 1k 10k 100k 1m 10m av current amp1 12.6 v 12.55 v ou t vcc = 19 v + inc ? inc outc (24) (1) (2) (current amp2) 20 13 12 10 error amplifier, gain, phase vs. frequency frequency f (hz) gain av (db) phase (deg) error amplifier, gain, phase vs. frequency frequency f (hz) gain av (db) phase (deg) current detection amplifier, gain, phase vs. frequency frequency f (hz) gain av (db) phase (deg) www.datasheet.co.kr datasheet pdf - http://www..net/
mb39a125/126 23 (continued) 0 1 00 2 00 3 00 4 00 5 00 6 00 7 00 8 00 ? 40 ? 20 0 20 40 60 80 10 0 7 40 0 500 1 000 1 500 2 000 2 500 3 000 3 500 4 000 ? 40 ? 200 2040608010 0 3 700 power dissipation vs. operating ambient temperature (ssop) operating ambient temperature ta ( c) power dissipation p d (mw) power dissipation vs. operating ambient temperature (qfn) operating ambient temperature ta ( c) power dissipation p d (mw) www.datasheet.co.kr datasheet pdf - http://www..net/
mb39a125/126 24 functional description 1. dc/dc converter block (1) reference voltage block (ref) the reference voltage circuit uses the voltage supplied from the vcc terminal (pin 21) to generate a temperature compensated, stable voltage (5.0 v typ) used as the refe rence power supply voltage for the ic?s internal circuitry. this block can also be used to obtain a load current to a maximum of 1 ma from the reference voltage vref terminal (pin 6) . (2) triangular wave oscillator block (osc) the triangular wave oscillator block has built-in capac itor for frequency setting into and generates the triangular wave oscillation waveform by connecting the frequency se tting resistor with the rt terminal (pin 17) . the triangular wave is input to th e pwm comparator circuits on the ic. (3) error amplifier block (error amp1) this amplifier detects the output signal from the current detection amplifier (current amp1) , compares this to the + ine1 terminal (pin 9) , and outputs a pwm control signal to be used in c ontrolling the charge current. in addition, an arbitrary loop gain can be set up by co nnecting a feedback resistor and capacitor between the fb123 terminal (pin 15) and ? ine1 terminal (pin 8) , providing st able phase compensation to the system. (4) error amplifier block (error amp2) this amplifier detects the output signal from the current detection amplifier (current amp2) , compares this to the + ine2 terminal (pin 3) , and outputs a pwm control signal to be used in c ontrolling the charge current. in addition, an arbitrary loop gain can be set up by co nnecting a feedback resistor and capacitor between the fb123 terminal (pin 15) and ? ine2 terminal (pin 4) , providing st able phase compensation to the system. (5) error amplifier block (error amp3) this error amplifier (error amp3) detects the output vo ltage from the dc/dc converter and outputs the pwm control signal. mb39a125 can set the desired level of output voltage from 1 cell to 4 cells by connecting external output voltage setting resistors to the error amplifier in verted input terminal. mb39A126 can set the output voltage for 3 cells or 4 cells by sel terminal (pin 11) input. in addition, an arbitrary loop gain can be set by connecting a feedback resistor and capacitor from the fb123 terminal (pin 15) to the ? ine3 terminal (pin 16) , enabling stab le phase compensation to the system. (6) current detection amplifier block (current amp1) the current detection amplifier (current amp1) detects a voltage drop which occurs between both ends of the output sense resistor (rs2) due to the flow of the charge current, using the + inc1 terminal (pin 13) and ? inc1 terminal (pin 12) . the signal amplified to 20 ti mes is output to the outc1 terminal (pin 10) . www.datasheet.co.kr datasheet pdf - http://www..net/
mb39a125/126 25 (7) current detection amplifier block (current amp2) the current detection amplifier (current amp2) detects a voltage drop which occurs between both ends of the output sense resistor (rs1) due to the flow of the ac adapter current, using the + inc2 terminal (pin 24) and ? inc2 terminal (pin 1) . the signal amplified to 20 times is output to the ou tc2 terminal (pin 2) . (8) pwm comparator block (pwm comp.) the pwm comparator circuit is a voltage-pulse width co nverter for controlling the output duty of the error amplifiers (error amp1 to error amp3) depending on their output voltage. the pwm comparator circuit compares the triangular wa ve voltage the lowest generated by the triangular wave oscillator to the error amplifier output voltage and turns on the external output transi stor, during the interval in which the triangular wave voltage is lowe r than the error amplifier output voltage. (9) output block (out) the output circuit uses a totem-pole configurati on capable of driving an external pch mos fet. the output ?l? level sets the output amplitude to 6 v (typ ) using the voltage generated by the bias voltage block (vh) . this results in increasing conversion efficiency and s uppressing the withstand volt age of the connected external transistor in a wide range of input voltages. (10) power supply control block (ctl) setting the ctl terminal (pin 14) low places the ic in the standby mode. (the power supply current is 10 a at maximum in the standby mode.) ctl function table : mb39a125 ctl function table : mb39A126 (11) bias voltage block (vh) the bias voltage circuit outputs v cc ? 6 v (typ) as the minimum potential of the output circuit. in the standby mode, this circuit outputs the potential equal to v cc . ctl power outd l off (standby) hi-z hon (active) l ctl power l off (standby) hon (active) www.datasheet.co.kr datasheet pdf - http://www..net/
mb39a125/126 26 2. protection functions (1) under voltage lockout protection circuit block (uvlo) the transient state or a momentary decrease in power su pply voltage or internal reference voltage (vref) , which occurs when the power supply (vcc) is turned on, may cause malfunctions in the control ic, resulting in breakdown or deterioration of the system. to prevent such malfunction, the under voltage lockout protection circuit detects internal reference voltage drop and fixes the out terminal (pin 20) to the ?h? level. the system restores voltage supply when the internal reference voltage reaches the th reshold voltage of the under vo ltage lockout protection circuit. protection circuit (uvlo) operation function table : mb39a125 when uvlo is operating (vref voltage is lower than uvlo threshold voltage, the logic of the following terminal is fixed.) protection circuit (uvlo) operation function table : mb39A126 when uvlo is operating (vref voltage is lower than uvlo threshold voltage, the logic of the following terminal is fixed.) (2) low input voltage detection block (uv comp.) uv comp. detects that power supply voltage (vcc) is lower than the battery voltage + 0.2 v (typ) and fixes the out terminal (pin 20) to the ?h? level. the system restores voltage supply when the power su pply voltage reaches the threshold voltage of the ac adapter detection block. protection circuit (uv comp.) op eration function table : mb39a125 when uv comp. is operating (vcc voltage is lower than uv comp. threshold voltage, the logic of the following terminal is fixed.) protection circuit (uv comp.) op eration function table : mb39A126 when uv comp. is operating (vcc voltage is lower than uv comp. threshold voltage, the logic of the following terminal is fixed.) outd out cs acok xacok hi-zhlhl out cs acok xacok hlhl outd out cs lhl out cs hl www.datasheet.co.kr datasheet pdf - http://www..net/
mb39a125/126 27 3. detection function (1) ac adapter voltage detection block (ac comp.) when acin terminal (pin 7) voltage is lower than 1.3 v (typ) , ac adapter voltage detection block (ac comp.) outputs ?hi-z? level to the acok terminal (pin 5) a nd outputs ?l? level to the xacok terminal (pin 18) . when ctl terminal (pin 14) is set to ?l? leve l, acok terminal (pin 5) and xacok terminal (pin 18) are fixed to ?hi-z? level. 4. switch function : mb39A126 the charge voltage can be set to 16.8 v/12.6 v with the sel terminal (pin 11) . sel function table acin acok xacok hlhi-z lhi-zl sel dc/dc output setting voltage h16.8 v l12.6 v www.datasheet.co.kr datasheet pdf - http://www..net/
mb39a125/126 28 constant charging voltage and current operation mb39a125/126 is dc/dc converter with the pulse width modulation (pwm) . mb39a125 is in the output voltage control loop, the error amp3 compares internal voltage reference voltage 4.2 v and dc/dc converter output to output the pwm controlled signal. mb39A126 is in the output voltage control loop, the error amp3 compares internal voltage reference voltage 4.2 v/3.15 v and dc/dc converter out put to output the pwm controlled signal. in the charging current control loop, the voltage drop generated at both ends of charging current sense resistor (rs2) is sensed by + inc1 terminal (pin 13) , ? inc1 terminal (pin 12) of curr ent amp1, and the signal is output to outc1 terminal (pin 10) , which is amplified by 20 times. error amp1 compares the outc1 terminal (pin 10) voltage, which is the output of current amp1, and + ine1 terminal (pin 9) to output the pwm control signal and regulates the charging current. in the ac adapter current control loop, the voltage dr op generated at both ends of ac adapter current sense resistor (rs1) is sensed by + inc2 terminal (pin 24) , ? inc2 terminal (pin 1) of current amp2, and the signal is output to outc2 terminal (pin 2) , which is amplified by 20 times. error amp2 compares outc2 terminal (pin 2) voltage, which is output of current amp2, and + ine2 terminal (pin 3) volt age and outputs pwm controlled signal, and it limits the charging current due to the ac adapter current not to exceed the setting value. the pwm comparator compares the triangular wave to the smallest terminal voltage among the error amp1, error amp2 and error amp3. and the triangular wave vo ltage generated by the triangular wave oscillator. when the triangular wave voltage is smaller than the error amplifier output voltage, the main side output transistor is turned on. www.datasheet.co.kr datasheet pdf - http://www..net/
mb39a125/126 29 setting the charge voltage mb39a125 the charging voltage (dc/dc output voltage) can be set by connecting external output voltage setting resistors (r3, r4) to the ? ine3 terminal (pin 16) . be sure to select a resistor value that allows you to ignore the on- resistance (35 ? , 1 ma) of the internal fet connected to the outd terminal (pin 11) . battery charging voltage : vo vo (v) = (r3 + r4) / r4 4.2 (v) ? + b outd ? ine3 vo r 3 r 4 4.2 v 11 16 www.datasheet.co.kr datasheet pdf - http://www..net/
mb39a125/126 30 mb39A126 the setting of the charge voltage is switched to 3cells or 4cells by the sel terminal (pin 11) . charge voltage is set to 16.8 v when sel terminal is ?h? level, and charge voltage is set to 12.6 v when sel terminal is ?l? level. battery charging voltage : vo vo (v) = (150 k ? + 50 k ? ) / 50 k ? 4.2 (v) = 16.8 (v) (sel = h) vo (v) = (150 k ? + 50 k ? ) / 50 k ? 3.15 (v) = 12.6 (v) (sel = l) ? + s el ? inc1 r3 r4 4.2 v 3.15 v 150 k ? 50 k ? ? ine3 11 16 12 www.datasheet.co.kr datasheet pdf - http://www..net/
mb39a125/126 31 setting the charge current the charge current value can be set at the analog voltage value of the + ine1 terminal (pin 9) . charge current formula : ichg (a) = v +ine1 (v) / (20 r s1 ( ? ) ) charge current setting voltage : v +ine1 (v) = 20 ichg (a) r s1 ( ? ) setting the input current the input limit current value can be se t at the analog voltage value of the + ine2 terminal (pin 3) . input current formula : i in (a) = v +ine2 (v) / (20 r s2 ( ? ) ) input current setting voltage : v +ine2 (v) = 20 i in (a) r s2 ( ? ) setting the triangular wave oscillation frequency the triangular wave oscillation frequency can be set by the timing resistor (r t ) connected to the rt terminal (pin 17) . triangular wave oscillation frequency fosc fosc (khz) : = 14100 / r t (k ? ) www.datasheet.co.kr datasheet pdf - http://www..net/
mb39a125/126 32 setting the soft-start time soft-start function prevents rush current at start-up of ic when the soft-start capacitor (cs) is connected to the cs terminal (pin 22) . this ic charges ex ternal soft-start capacitor (cs) with 10 a after ctl terminal (pin 14) voltage level becomes high and ic starts (when v cc uvlo threshold voltage) . output on duty depends on pwm comp arator, which compares the fb123 te rminal (pin 15) voltage with the triangular wave oscillator output voltage. during soft start, fb123 terminal (pin 15) voltage increases with sum volt age of cs terminal and diode voltage. therefore, the output voltage of the dc/dc converte r and current increase can be set by output on duty in proportion to rise of cs terminal (pin 22) voltage. the on duty is affected by the ramp voltage of fb123 terminal (pin 15) until an output voltage of one error amp r eaches the dc/dc converter loop controlled voltage. soft-start time is obtained from the following formula : soft-start time : ts (time to output on duty 80 % ) ts (s) : = 0.13 cs ( f) ct cs 0 v 0 v 0 v 0 a i o v o o ut c t c s fb12 3 out vo io error amp3 threshold voltage f b123  soft - start timing chart www.datasheet.co.kr datasheet pdf - http://www..net/
mb39a125/126 33 transient response at load-step the constant voltage control loop a nd the constant current control loop are independent. with the load-step, these two control loops change. the battery voltage and current overshoot are generated by the delay time of the control loop when the mode changes. the delay time is determined by phase compensation constant. wh en the battery is removed if the charge control is switched from the constant current c ontrol to the constant volta ge control, and the charging voltage does overshoot by generating t he period controlled with high duty by output setting voltage. the excessive voltage is not applied to the battery because the battery is not connected. when the battery is connected if the char ge control is switched from the cons tant voltage control to the constant current control, and the charging cu rrent does overshoot by generating the period controlled with high duty by charge current setting. the battery pack manufacturer in japan thinks it is not the problem the current ov ershoot of 10 ms or less. 10 ms constant current battery voltage error amp3 output error amp1 output e rror amp3 output constant current constant voltage error amp1 output battery current when charge co ntrol switches from the constant current control to the constant voltage control, the voltage does overshoot by gener- ating the period controlled with high duty by output setting voltage. the battery pack manufac- turer in japan thinks it is not the problem the current overshoot of 10 ms or less.  timing chart at load - step www.datasheet.co.kr datasheet pdf - http://www..net/
mb39a125/126 34 ac adapter detection function when acin terminal (pin 7) voltage is lower than 1.3 v (typ) , ac adapter voltage detection block (ac comp.) outputs ?hi-z? level to the acok terminal (pin 5) and outputs ?l? level to the xaco k terminal (pin 18) . when ctl terminal (pin 14) is set to ?l? leve l, acok terminal (pin 5) and xacok terminal (pin 18) are fixed to ?hi-z? level. (1) ac adapter presence if you connect as shown in the figure below the pres ence of ac adapter can be ea sily detected because the signal is output from the acok terminal (pin 5) to microc omputer etc. in this case, if the ctl terminal is set to ?l? level, ic becomes the standby state (i cc = 0 a typ). + ? micon acin acok xacok a c adapter 7 518  connection example of detect ing ac adapter presence www.datasheet.co.kr datasheet pdf - http://www..net/
mb39a125/126 35 (2) automatic changing system power supply between ac adapter and battery the ac adapter voltage is detected and external switch at input side and battery side can be changed automat- ically with the connection as follows. connect ctl terminal (pin 14) to vcc terminal (pin 21) for this function. off duty cycle becomes 100 % when cs terminal (pin 22) voltage is made to be 0 v, if it is needed after full charge. + ? acin acok xacok syste m a c adapter batte ry vcc ctl cs vref 10 a micon < soft> 7 518 21 14 22  connection example of automati c changing system power supply between ac adapter and battery www.datasheet.co.kr datasheet pdf - http://www..net/
mb39a125/126 36 (3) battery selector function when control signal from microcomputer etc. is input to ac in terminal (pin 7) as shown in the following diagram, acok terminal (pin 5) output voltage and xacok term inal (pin 18) output voltage are controlled to select one of the two batteries for charge. connec t ctl terminal (pin 14) to vcc termin al (pin 21) for this function. off duty cycle becomes 100 % when cs terminal (pin 22) voltage is made to be 0 v, if it is needed after full charge. + ? acin acok xacok system a c adapter battery1 vcc ctl cs vref < soft> 10 a micon i chg rs1 ab battery 2 7 518 21 14 22  connection example of battery selector function www.datasheet.co.kr datasheet pdf - http://www..net/
mb39a125/126 37 (4) when ac comp. is not used when ac comp. (acin (pin 7) , acok (pin 5) , and xa cok (pin 18) terminals) is not used as follows, connect the acin (pin 7) , acok (pin 5) , and xacok (pin 18) terminals to gnd terminal (pin 23) . and connect vcc terminal (pin 21) to system, as follows , to avoid the reverse current from the battery to the vcc terminal (pin 21) . + ? acin acok xacok system a c adapter batte ry vcc i chg rs1 ab 7 518 21  connection example when ac comp. is not used www.datasheet.co.kr datasheet pdf - http://www..net/
mb39a125/126 38 phase compensation + ? ? + ? ? ? ? ? ? lo : inductance rl : equivalent series resistance of inductance co : capacity of condenser esr : equivalent series resistance of condenser ro : load resistance  example circuit ? 90 ? 80 ? 70 ? 60 ? 50 ? 40 ? 30 ? 20 ? 10 0 10 20 30 40 50 60 70 80 90 1 10 100 1k 10k 100k 1m 10m ? 180 ? 160 ? 140 ? 120 ? 100 ? 80 ? 60 ? 40 ? 20 0 20 40 60 80 100 120 140 160 180 gain phase phase gain phase [deg] gain [db] frequency characteristic of power output lc filter (dc gain is included.) frequency [hz] (ro (ro 2 1 rl) esr ) co lo f1 (hz) = + + lo = 15 h co = 14.1 f ro = 4.2 ? rl = 30 m ? esr = 100 m ? cut-off frequency  frequency characteristics of lc filter www.datasheet.co.kr datasheet pdf - http://www..net/
mb39a125/126 39 notes : 1) please review the error amp frequency char acteristics, when lc filt er parameter is modified. 2) when the ceramic capacitor is used as smoothi ng capacitor co, phase margin is reduced because esr of the ceramic capacitor is extremely small as shown in ?frequency characteristics of lc filter which is using low esr?. therefore, change phase compensati on of error amp or create resist ance equivalent to esr using pattern. ? 90 ? 80 ? 70 ? 60 ? 50 ? 40 ? 30 ? 20 ? 10 0 10 20 30 40 50 60 70 80 90 ? 180 ? 160 ? 140 ? 120 ? 100 ? 80 ? 60 ? 40 ? 20 0 20 40 60 80 100 120 140 160 180 1 10 100 1k 10k 100k 1m total gain amp open loop gain total phase phase phase [deg] gain [db] gain c c rc f2(hz) = 2 1 total frequency characteristic frequency [hz] rc = 150 k ? cc = 3300 pf cut-off frequency  frequency characteristics of error amp ? 90 ? 80 ? 70 ? 60 ? 50 ? 40 ? 30 ? 20 ? 10 0 10 20 30 40 50 60 70 80 90 ? 180 ? 160 ? 140 ? 120 ? 100 ? 80 ? 60 ? 40 ? 20 0 20 40 60 80 100 120 140 160 180 1 10 100 1k 10k 100k 1m phase gain total gain amp open loop gain total phase phase [deg] gain [db] total frequency characteristic frequency [hz] triangular wave frequency the overview of frequency characteristic for dc/dc converter can be obtained in combination between ?frequency characteristics of lc filter? and ?frequency characteristics of error amp ? as mentioned above. please note the following point in order to stabilize the frequency characteristics of dc/dc converter . cut-off frequency of dc/dc converter should be set to half or less of the triangular wave oscillator frequency.  frequency characteristics of dc/dc converter www.datasheet.co.kr datasheet pdf - http://www..net/
mb39a125/126 40 ? 90 ? 80 ? 70 ? 60 ? 50 ? 40 ? 30 ? 20 ? 10 0 10 20 30 40 50 60 70 80 90 1 10 100 1k 10k 100k 1m 10m ? 180 ? 160 ? 140 ? 120 ? 100 ? 80 ? 60 ? 40 ? 20 0 20 40 60 80 100 120 140 160 180 gain phase phase gain phase [deg] gain [db] frequency characteristic of power output lc filter (dc gain is included.) frequency [hz] (ro (ro 2 1 rl) esr ) co lo f1 (hz) = + + board pattern or connected resistor ? + lo = 15 h co = 14.1 f ro = 4.2 ? rl = 30 m ? esr = 100 m ? cut-off frequency <3pole2zero> dc/dc output < additional esr>  frequency characteristics of lc filter which is using low esr www.datasheet.co.kr datasheet pdf - http://www..net/
mb39a125/126 41 processing without using of the current amp1 and amp2 when current amp is not used, connect the + inc1 terminal (pin 13) , + inc2 terminal (pin 24) , ? inc1 terminal (pin 12) , and ? inc2 terminal (pin 1) to vref terminal (pin 6) , and then leave outc1 terminal (pin 10) and outc2 terminal (pin 2) open. processing without using of the error amp1 and amp2 when error amp is not used, leave fb123 terminal (pin 15) open, connect the ? ine1 terminal (pin 8) and ? ine2 terminal (pin 4) to gnd, and connect + ine1 terminal (pin 9) and + ine2 terminal (pin 3) to vref terminal (pin 6) . 6 2 10 1 12 13 ? inc2 outc2 outc1 vref + inc1 24 + inc2 ? inc1 ?open?  connection when current amp is not used 6 16 4 8 3 9 23 + ine2 ? ine2 ? ine1 vref gnd fb123 + ine1 ?open?  connection when error amp is not used www.datasheet.co.kr datasheet pdf - http://www..net/
mb39a125/126 42 processing without using of the cs terminal when soft-start function is not used, leave the cs terminal (pin 22) open. cs 22 ?open?  connection when no soft - start time is specified www.datasheet.co.kr datasheet pdf - http://www..net/
mb39a125/126 43 i/o equivalent circuit (continued) 1.235 v vcc ctl gnd vref gnd gnd gnd gnd fb123 vcc vcc cs cs 4.2 v rt ? ine1 + ine1 v ref ( 5.0 v) vref (5.0 v) vref (5.0 v) 37.8 k ? 33.1 k ? 51 k ? 12.35 k ? 14 6 + ? + ? 23 21 22 17 9 8 gnd gnd fb123 outc1 vcc vcc ? ine2 ? inc1 + inc1 + ine2 3 4 gnd vcc 16 15 10 12 13 gnd outc 2 fb12 3 vcc ? inc2 + inc2 2 1 24 ? ? esd protection element ? ? ? ? ? ? ? esd protection element www.datasheet.co.kr datasheet pdf - http://www..net/
mb39a125/126 44 (continued) vcc v cc vcc fb123 ct gnd g nd v cc vh outd sel g nd gnd gnd acin acok xacok gnd vh 20 7 v ref ( 5.0 v ) 5 18 19 11 11 33.1 k ? 51 k ? out ? ? ? ? ? 39A126> ? www.datasheet.co.kr datasheet pdf - http://www..net/
mb39a125/126 45 application example 1 ? mb39a125 500 khz max c t vh vref vref uvlo bias voltage ? 2.5 v ? 1.5 v vref vcc 0.2 v slope control q2 i in r17 51 k ? rs1 0.015 ? r18 24 k ? q1 v in r14 15 k ? r15 68 k ? r16 10 k ? r12 30 k ? r3 33 k ? r6 10 k ? r7 10 k ? c10 6800 pf r9 36 k ? r10 20 k ? c13 4.2 v 22 pf c8 6800 pf c6 2200 pf c14 47 pf (45 pf) r13 20 k ? r11 sw2 1.1 k ? (8 v to 25 v) to system q3 batte ry 100 k ? c15 r19 56 k ? 0.033 ? rs2 l1 15 h 10 f c3 d1 10 f c4 c1 0.1 f 0.22 f c7 0.1 f c12 out vh vcc xacok acok acin ? ine1 ? inc1 ? inc1 (vo) + inc1 + inc2 + ine2 outd fb123 r21 r23 100 k ? rt vref 4.2 v bias gnd ctl c9 r4 47 k ? 100 k ? r5 100 k ? r8 100 k ? r22 200 k ? cs 5.0 v c11 0.22 f 10 f ? inc2 + ine1 ? ine2 outc1 i chg r20 0.22 f b a 21 18 5 7 8 10 2 13 20 19 14 12 24 9 4 a b 1 3 15 16 11 22 6 (vcc ? 6 v) ? ine3 17 23 ? + ? + + ? + ? + ? ? + 20 + ? 20 vref drive + ? outc2 10 f www.datasheet.co.kr datasheet pdf - http://www..net/
mb39a125/126 46 parts list 1 ? mb39a125 note : nec : nec corporation rohm : rohm co., ltd. sumida : sumida corporation tdk : tdk corporation koa : koa corporation ssm : susumu co., ltd. component item specification vendor parts no. q1, q2, q3 pch fet vds = ? 30 v, id = ? 7.0 a nec pa2714gr d1 diode vf = 0.42 v (max) , at if = 3 a rohm rb053l-30 l1 inductor 15 h 3.6 a, 50 m ? sumida cdrh104r-150 c1, c3, c4 c6 c7, c12 c8, c10 c9, c11 c13 c14 c15 ceramics condenser ceramics condenser ceramics condenser ceramics condenser ceramics condenser ceramics condenser ceramics condenser ceramics condenser 10 f 2200 pf 0.1 f 6800 pf 0.22 f 22 pf 47 pf 0.22 f 25 v 50 v 50 v 50 v 16 v 50 v 50 v 25 v tdk tdk tdk tdk tdk tdk tdk tdk c3225x5r1e106k c1608jb1h222k c1608jb1h104k c1608jb1h682k c1608jb1c224k c1608ch1h220j c1608ch1h470j c2012jb1e224k rs1 rs2 r3 r4 r5, r8 r6, r7 r9 r10 r11 r12 r13 r14 r15 r16 r17 r18 r19, r21, r23 r20 r22 resistor resistor resistor resistor resistor resistor resistor resistor resistor resistor resistor resistor resistor resistor resistor resistor resistor resistor resistor 15 m ? 33 m ? 33 k ? 47 k ? 100 k ? 10 k ? 36 k ? 20 k ? 1.1 k ? 30 k ? 20 k ? 15 k ? 68 k ? 10 k ? 51 k ? 24 k ? 100 k ? 56 k ? 200 k ? 1 % 1 % 0.5 % 0.5 % 0.5 % 0.5 % 0.5 % 0.5 % 0.5 % 0.5 % 0.5 % 0.5 % 0.5 % 0.5 % 0.5 % 0.5 % 0.5 % 0.5 % 0.5 % koa koa ssm ssm ssm ssm ssm ssm ssm ssm ssm ssm ssm ssm ssm ssm ssm ssm ssm sl1tte15lof sl1tte33lof rr0816p-333-d rr0816p-473-d rr0816p-104-d rr0816p-103-d rr0816p-363-d rr0816p-203-d rr0816p-112-d rr0816p-303-d rr0816p-203-d rr0816p-153-d rr0816p-683-d rr0816p-103-d rr0816p-513-d rr0816p-243-d rr0816p-104-d rr0816p-563-d rr0816p-204-d www.datasheet.co.kr datasheet pdf - http://www..net/
mb39a125/126 47 application example 2 ? mb39A126 500 khz max c t vh vref vref uvlo bias voltage ? 2.5 v ? 1.5 v vref vcc 0.2 v slope control q2 i in r17 51 k ? rs1 0.015 ? r18 24 k ? q1 v in r14 15 k ? r15 68 k ? r16 10 k ? r12 30 k ? r3 33 k ? r6 10 k ? r7 10 k ? c10 6800 pf r9 36 k ? r10 20 k ? c13 22 pf c14 r1 r2 47 pf c8 6800 pf c6 2200 pf (45 pf) r13 20 k ? r11 sw2 1.1 k ? (8 v to 25 v) to system q3 batte ry 100 k ? c15 r19 56 k ? 0.033 ? rs2 l1 15 h 10 f c3 d1 10 f c4 0.1 f 0.22 f c7 0.1 f c12 out vh vcc xacok acok acin ? ine1 ? inc1 ? inc1 (vo) + inc1 + inc2 + ine2 fb123 hi : 4 cells lo : 3 cells rt vref 4.2 v bias gnd ctl c9 r4 47 k ? r5 100 k ? r8 100 k ? cs 5.0 v c11 0.22 f 10 f ? inc2 + ine1 ? ine2 outc1 i chg r20 0.22 f b a 21 18 5 7 8 10 2 13 20 19 14 12 24 9 4 a b 1 3 15 16 22 6 ( vcc ? 6 v ) ? ine3 sel 17 23 ? + ? + + ? + ? + ? ? + 20 + ? 20 vref drive + ? 4.2 v / 3.15 v 11 outc2 10 f c1 www.datasheet.co.kr datasheet pdf - http://www..net/
mb39a125/126 48 parts list 2 ? mb39A126 note : nec : nec corporation rohm : rohm co., ltd. sumida : sumida corporation tdk : tdk corporation koa : koa corporation ssm : susumu co., ltd. component item specification vendor parts no. q1, q2, q3 pch fet vds = ? 30 v, id = -7.0 a nec pa2714gr d1 diode vf = 0.42 v (max) , at if = 3 a rohm rb053l-30 l1 inductor 15 h 3.6 a, 50 m ? sumida cdrh104r-150 c1, c3, c4 c6 c7, c12 c8, c10 c9, c11 c13 c14 c15 ceramics condenser ceramics condenser ceramics condenser ceramics condenser ceramics condenser ceramics condenser ceramics condenser ceramics condenser 10 f 2200 pf 0.1 f 6800 pf 0.22 f 22 pf 47 pf 0.22 f 25 v 50 v 50 v 50 v 16 v 50 v 50 v 25 v tdk tdk tdk tdk tdk tdk tdk tdk c3225x5r1e106k c1608jb1h222k c1608jb1h104k c1608jb1h682k c1608jb1c224k c1608ch1h220j c1608ch1h470j c2012jb1e224k rs1 rs2 r3 r4 r5, r8 r6, r7 r9 r10 r11 r12 r13 r14 r15 r16 r17 r18 r19 r20 resistor resistor resistor resistor resistor resistor resistor resistor resistor resistor resistor resistor resistor resistor resistor resistor resistor resistor 15 m ? 33 m ? 33 k ? 47 k ? 100 k ? 10 k ? 36 k ? 20 k ? 1.1 k ? 30 k ? 20 k ? 15 k ? 68 k ? 10 k ? 51 k ? 24 k ? 100 k ? 56 k ? 1 % 1 % 0.5 % 0.5 % 0.5 % 0.5 % 0.5 % 0.5 % 0.5 % 0.5 % 0.5 % 0.5 % 0.5 % 0.5 % 0.5 % 0.5 % 0.5 % 0.5 % koa koa ssm ssm ssm ssm ssm ssm ssm ssm ssm ssm ssm ssm ssm ssm ssm ssm sl1tte15lof sl1tte33lof rr0816p-333-d rr0816p-473-d rr0816p-104-d rr0816p-103-d rr0816p-363-d rr0816p-203-d rr0816p-112-d rr0816p-303-d rr0816p-203-d rr0816p-153-d rr0816p-683-d rr0816p-103-d rr0816p-513-d rr0816p-243-d rr0816p-104-d rr0816p-563-d www.datasheet.co.kr datasheet pdf - http://www..net/
mb39a125/126 49 selection of components ? pch mos fet the pch mos fet for switching us e should be rated for at least + 20 % more than the input voltage. to minimize continuity loss, use a fet with low r ds (on) between the drain and source. for high input voltage and high frequency operation, on-cycle switching loss will be higher so that power diss ipation must be considered. in this application, the nec pa2714gr is used. continuity loss, on/off switching loss, and total loss are determined by the following formulas. the selection must ensure that peak drain current does not exceed rated values. example) using the pa2714gr 16.8 v setting input voltage v in (max) = 25 v, output voltage v o = 16.8 v, drain current i d = 3 a, oscillation frequency fosc = 300 khz, l = 15 h, drain-source on resistance r ds (on) : = 18 m ? , tr : = 15 ns, tf : = 42 ns continuity loss : pc p c = i d 2 r ds (on) duty on-cycle switching loss : p s (on) p s (on) = v d (max) i d tr fosc 6 off-cycle switching loss : p s (off) p s (off) = v d (max) i d (max) tf fosc 6 total loss : p t p t = p c + p s (on) + p s (off) drain current (max) : i d (max) i d (max) = io + v in ? vo t on 2l = 3 + 25 ? 16.8 1 0.672 2 15 10 ? 6 300 10 3 : = 3.6 a drain current (min) : i d (min) i d (min) = io ? v in ? vo t on 2l = 3 ? 25 ? 16.8 1 0.672 2 15 10 ? 6 300 10 3 : = 2.4 a www.datasheet.co.kr datasheet pdf - http://www..net/
mb39a125/126 50 the above power dissipation figures for the pa2714gr are satisfied with ample margin at 2.0 w. 12.6 v setting input voltage v in (max) = 22 v, output voltage v o = 12.6 v, drain current i d = 3 a, oscillation frequency fosc = 300 khz, l = 15 h, drain-source on resistance r ds (on) : = 18 m ? , tr : = 15 ns, tf : = 42 ns p c = i d 2 r ds (on) duty = 3 2 0.018 0.672 : = 0.109 w p s (on) = v d i d tr fosc 6 = 25 3 15 10 ? 9 300 10 3 6 : = 0.056 w p s (off) = v d i d (max) tf fosc 6 = 25 3.6 42 10 ? 9 300 10 3 6 : = 0.189 w p t = p c + p s (on) + p s (off) : = 0.109 + 0.056 + 0.189 : = 0.354 w drain current (max) : i d (max) i d (max) = io + v in ? vo t on 2l = 3 + 22 ? 12.6 1 0.572 2 15 10 ? 6 300 10 3 : = 3.6 a drain current (min) : i d (min) i d (min) = io ? v in ? vo t on 2l = 3 ? 22 ? 12.6 1 0.572 2 15 10 ? 6 300 10 3 : = 2.4 a www.datasheet.co.kr datasheet pdf - http://www..net/
mb39a125/126 51 the above power dissipation figures for the pa2714gr are satisfied with ample margin at 2.0 w. the pch mos fet for switching use must use the one of more than input voltage +20%. fet which operates when the ac adapt er is connected should select fet which satisfies the current decided by sense resistance r1 enough. because fet which op erates when the ac adapter is not connected becomes a supply by the battery, it is necessary to select fet which satisfies the current of the system enough. in this application, the nec pa2714gr is used. ? inductor in selecting inductors, it is of course essential not to apply more current than the ra ted capacity of the inductor, but also to note that the lower limit for ripple current is a critical point that if reached will cause discontinuous operation and a considerable drop in efficiency. this can be prevented by choosing a higher inductance value, which will enable continuous operation under light-loads. note that if the inductance value is too high, however, direct current resistance (dcr) is increased and this will also reduce efficiency. the inductance must be set at the point where efficiency is greatest. note also that the dc superimposition characteristic becomes worse as the load current value approaches the rated current value of the inductor, so that the induct ance value is reduced and ripple current increases, causing loss of efficiency. the selection of rated current value a nd inductance value will vary depending on where the point of peak efficiency lies with respect to load current. inductance values are determined by the following formulas. the l value for all load current conditions is set so that the peak to peak value of the ripple current is 1/2 the load current or less. p c = i d 2 r ds (on) duty = 3 2 0.018 0.572 : = 0.093 w p s (on) = v d i d tr fosc 6 = 22 3 15 10 ? 9 300 10 3 6 : = 0.050 w p s (off) = v d i d (max) tf fosc 6 = 22 3.6 42 10 ? 9 300 10 3 6 : = 0.166 w p t = p c + p s (on) + p s (off) : = 0.093 + 0.050 + 0.166 : = 0.309 w www.datasheet.co.kr datasheet pdf - http://www..net/
mb39a125/126 52 16.8 v output example) 12.6 v output example) inductance values derived from the above formulas are va lues that provide sufficient margin for continuous operation at maximum load current, but at which continuous ope ration is not possible at light loads. it is therefore necessary to determine the load level at which continuous operation becomes possible . in this application, the sumida cdrh104r-150 is used. the following formula is available to obtain the load current as a continuous current condition when 15 h is used. example) using the cdrh104r-150 15 h (tolerance 30 % ) , rated current = 3.6 a 16.8 v output inductance value : l l 2 (v in ? vo) t on io l 2 (v in (max) ? vo) t on io 2 (25 ? 16.8) 1 0.672 3 300 10 3 12.2 h l 2 (v in (max) ? vo) t on io 2 (22 ? 12.6) 1 0.572 3 300 10 3 12.0 h the value of the load current satisfyi ng the continuous current condition : io io vo t off 2l io vo t off 2l 16.8 1 (1 ? 0.672) 2 15 10 ? 6 300 10 3 0.61 a www.datasheet.co.kr datasheet pdf - http://www..net/
mb39a125/126 53 12.6 v output to determine whether the current through the inductor is within rated values, it is necessary to determine the peak value of the ripple current as well as the peak-to- peak values of the ripple current that affects the output ripple voltage. the peak value and peak- to-peak value of the ripple current can be determined by the following formulas. example) using the cdrh104r-150 15 h (tolerance 30 % ) , rated current = 3.6 a peak value 16.8 v output 12.6 v output io vo t off 2l 12.6 1 (1 ? 0.572) 2 15 10 ? 6 300 10 3 0.60 a peak value : i l i l io + v in ? vo t on 2l peak-to-peak value : ? i l ? i l = v in ? vo t on l i l io + v in ? vo t on 2l 3 + 25 ? 16.8 1 0.672 2 15 10 ? 6 300 10 3 3.6 a i l io + v in ? vo t on 2l 3 + 22 ? 12.6 1 0.572 2 15 10 ? 6 300 10 3 3.6 a www.datasheet.co.kr datasheet pdf - http://www..net/
mb39a125/126 54 peak-to-peak value 16.8 v output 12.6 v output ? flyback diode shottky barrier diode (sbd) is generally used for the flybac k diode when the reverse vo ltage to the diode is less than 40v. the sbd has the characteristic s of higher speed in terms of faster reverse recovery time, and lower forward voltage, and is ideal for achieving high efficiency. as long as the dc reverse volt age is sufficiently higher than the input voltage, and the mean current flowing duri ng the diode conduction time is within the mean output current level, and as the peak current is within the peak sur ge current limits, there is no problem. in this application the rohm rb053l-30 are used. the diode mean current and di ode peak current can be obtained by the following formulas. example) using the rb053l-30 v r (dc reverse voltage) = 30 v, mean output current = 3.0 a, peak surge current = 70 a, v f (forward voltage) = 0.42 v, at i f = 3.0 a 16.8 v output ? i l = v in ? vo t on l = 25 ? 16.8 1 0.672 15 10 ? 6 300 10 3 : = 1.22 a ? i l = v in ? vo t on l = 22 ? 12.6 1 0.572 15 10 ? 6 300 10 3 : = 1.2 a diode mean current : i d i i d i io (1 ? vo ) v in diode peak current : i d ip i d ip (io + vo t off ) 2l i d i io (1 ? vo ) v in 3 (1 ? 0.672) 0.984 a www.datasheet.co.kr datasheet pdf - http://www..net/
mb39a125/126 55 12.6 v output 16.8 v output 12.6 v output ? charge current sense resistor please note the following in selecting the charge current sense resistance. first of all, meet the electric power to the flowing current. however, the conversion efficiency deteriorates beca use the loss in the sense resistance grows when resistance is adjusted to a too big value. t he accuracy of the charge current deteriorates because the voltage difference of both ends of the sense resist ance becomes small when resist ance is adjusted to a too small value oppositely. 33 m ? of the koa sl1tte33lof is used in this application. the sense resistance value can be determined by the following formulas. in this application, 33 m ? of the koa sl1tte33lof is used. example) when the + ine1 terminal (pin 9) voltage is 2 v and the charge current (io) is 3.0 a i d i io (1 ? vo ) v in 3 (1 ? 0.572) 1.284 a i d ip (io + vo t off ) 2l 3.6 a i d ip (io + vo t off ) 2l 3.6 a sense resistor : rs2 rs2 = + ine1 20 io rs2 = + ine1 20 io = 2 20 3.0 = 33.3 m ? www.datasheet.co.kr datasheet pdf - http://www..net/
mb39a125/126 56 ? input current sense resistor please note the following in selecting the input current sens e resistance. first of all, meet the electric power to the flowing current. however, the conversion efficienc y deteriorates because the loss in the sense resistance grows when resistance is adjusted to a too big value. t he accuracy of the input current deteriorates because the voltage difference of both ends of the sense resist ance becomes small when resist ance is adjusted to a too small value oppositely. 33 m ? of the koa sl1tte33lof is used in this application. the sense resistance value can be determined by the following formulas. in this application, 15 m ? of the koa sl1tte15lof is used. example) when the + ine2 terminal (pin 3) voltage is 1.79 v and the input current (i in ) is 6.0 a sense resistor : rs1 rs1 = + ine2 20 i in rs1 = + ine2 20 i in = 1.79 20 6.0 = 14.9 m ? www.datasheet.co.kr datasheet pdf - http://www..net/
mb39a125/126 57 reference data (continued) 50 55 60 65 70 75 80 85 90 95 1 00 v in = 19 v vo = 16.8 v setting 1 0 0.1 0.01 1 50 55 60 65 70 75 80 85 90 95 1 00 v in = 19 v vo = 12.6 v setting 1 0 0.1 0.01 1 50 55 60 65 70 75 80 85 90 95 1 00 v in = 19 v io = 3 a setting 1 8 24 8 0 6 10 12 14 16 50 55 60 65 70 75 80 85 90 95 1 00 v in = 19 v io = 3 a setting 1 8 24 8 0 6 10 12 14 16 0 2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 0 v in = 19 v vo = 16.8 v setting 0.5 1.0 1.5 2.0 2.5 3.0 4 .0 3.5 0.0 sw2 = on sw2 = off 0 2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 0 v in = 19 v vo = 12.6 v setting 0.5 1.0 1.5 2.0 2.5 3.0 4 .0 3.5 0.0 sw2 = on sw2 = off conversion efficiency vs. charging current (constant voltage mode) conversion efficiency ( % ) charging current i o (a) conversion efficiency vs. charging current (constant voltage mode) conversion efficiency ( % ) charging current i o (a) conversion efficiency vs. charging voltage (constant current mode) conversion efficiency ( % ) charging voltage v o (v) conversion efficiency vs. charging voltage (constant current mode) conversion efficiency ( % ) charging voltage v o (v) charging voltage vs. charging current charging voltage v o (v) charging current i o (a) charging voltage vs. charging current charging voltage v o (v) charging current i o (a) www.datasheet.co.kr datasheet pdf - http://www..net/
mb39a125/126 58 (continued) 0 1.0 2.0 out (v) 15 10 5 0 p ch d rain ( v) 10 5 0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 ( s) 0 1.0 2.0 out (v) 15 10 5 0 pch drain (v) 10 5 0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 ( s) 0 1.0 2.0 out (v) 15 10 5 0 pch drain (v) 10 5 0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 ( s) 0 1.0 2.0 out (v) 15 10 5 0 pch drain (v) 10 5 0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 ( s) out out out out pch drain pch drain pch drain pch drain v in = 19 v vo = 16.8 v setting io = 1.5 a sw2 = off v in = 19 v vo = 10.0 v io = 3.0 a setting sw2 = off v in = 19 v vo = 12.6 v setting io = 1.5 a sw2 = off v in = 19 v vo = 10.0 v io = 3.0 a setting sw2 = off v o = 12.6 v setting v o = 16.8 v setting switching waveform (c onstant voltage mode) v o = 12.6 v setting v o = 16.8 v setting switching waveform (constant current mode) www.datasheet.co.kr datasheet pdf - http://www..net/
mb39a125/126 59 (continued) 0510 l o ( a) 5 4 3 2 1 0 vo (v) 18 16 14 12 10 ctl (v) 10 0 15 20 25 30 35 40 45 50 (ms) 0510 l o ( a) 5 4 3 2 1 0 vo (v) 18 16 14 12 10 ctl (v) 10 0 15 20 25 30 35 40 45 50 (ms) 0510 lo (a) 5 4 3 2 1 0 vo (v) 18 16 14 12 10 ct l (v) 10 0 15 20 25 30 35 40 45 50 (ms ) 0510 lo (a) 5 4 3 2 1 0 vo (v ) 18 16 14 12 10 ct l (v ) 10 0 15 20 25 30 35 40 45 50 (ms ) v in = 19 v io = 3 a setting sw2 = off ctl lo vo v in = 19 v vo = 16.8 v setting sw2 = off lo vo v in = 19 v io = 3 a setting sw2 = off ctl lo vo v in = 19 v vo = 16.8 v setting sw2 = off ctl lo vo ctl soft-start operating waveform (constant current mode) soft-start operating waveform (constant voltage mode) www.datasheet.co.kr datasheet pdf - http://www..net/
mb39a125/126 60 (continued) 0 2 4 6 8 10 12 14 16 18 20 (ms) vo (v) 18 16 14 3 2 i o (a) 1 0 io 4 5 6 12 10 io 0 2 4 6 8 10 12 14 16 18 20 (ms) vo (v) 18 16 14 3 2 io (a) 1 0 io 4 5 6 12 10 0 2 4 6 8 101214161820 (ms) vo (v) 18 16 14 3 2 i o (a) 1 0 io 4 5 6 12 10 024 6 8101214161820 (ms ) vo (v ) 18 16 14 3 2 io (a) 1 0 io 4 5 6 12 10 vo vo vo vo vo vo io vo vo io io v in = 19 v io = 3.0 a setting sw2 = off cv to cc v in = 19 v io = 3.0 a setting sw2 = off cc to cv v in = 19 v vo = 16.8 v setting sw2 = off cv to cv v in = 19 v vo = 16.8 v setting sw2 = off cv to cv load-step response operation waveform (c.v mode c.c mode) load-step response operation waveform (c.c mode c.v mode) load-step response operation waveform (c.v mode c.v mode) load-step response operation waveform (c.v mode c.v mode) www.datasheet.co.kr datasheet pdf - http://www..net/
mb39a125/126 61 usage precautions  printed circuit board ground lines should be set up with consideration for common impedance.  take appropriate static electricity measures. ? containers for semiconductor materials should have anti-st atic protection or be made of conductive material. ? after mounting, printed circuit boa rds should be stored and shipped in conductive bags or containers. ? work platforms, tools, and inst ruments should be properly grounded. ? working personnel should be grou nded with resistance of 250 k ? to 1 m ? between body and ground.  do not apply negative voltages. ? the use of negative voltages below ? 0.3 v may create parasitic transisto rs on lsi lines, which can cause abnormal operation. ordering information part number package remarks mb39a125pfv 24-pin plastic ssop (fpt-24p-m03) mb39a125wqn 28-pin plastic qfn (lcc-28p-m11) mb39A126pfv 24-pin plastic ssop (fpt-24p-m03) mb39A126wqn 28-pin plastic qfn (lcc-28p-m11) www.datasheet.co.kr datasheet pdf - http://www..net/
mb39a125/126 62 package dimensions (continued) 24-pin plastic ssop (fpt-24p-m03) note 1) *1 : resin protrusion. (each side : +0.15 (.006) max). note 2) *2 : these dimensions do not include resin protrusion. note 3) pins width and pins th ickness include plating thickness. note 4) pins width do not include tie bar cutting remainder. dimensions in mm (inches). note: the values in parentheses are reference values. c 2003 fujitsu limited f24018s-c-4-5 7.750.10(.305.004) 5.600.10 7.600.20 (.220.004) (.299.008) * 1 * 2 0.10(.004) 112 13 24 0.65(.026) ?0.07 +0.08 0.24 .009 +.003 ?.003 m 0.13(.005) index 0.170.03 (.007.001) "a" 0.25(.010) 0.100.10 (.004.004) (stand off) details of "a" part (mounting height) 1.25 +0.20 ?0.10 ?.004 +.008 .049 0~8 ? 0.500.20 (.020.008) 0.600.15 (.024.006) 0.10(.004) www.datasheet.co.kr datasheet pdf - http://www..net/
mb39a125/126 63 (continued) 28-pin plastic qfn (lcc-28p-m11) dimensions in mm (inches). note: the values in parentheses are reference values. c 2004 fujitsu limited c28068sc-2-1 (.197 .004) 5.00 0.10 0.08(.003) (.138 .004) 5.00 0.10 (.197 .004) 3.50 0.10 3.50 0.10 (.138 .004) 3-r0.20 (3-r.008) 0.50(.020) typ (.016 .004) 0.40 0.10 1pin corner (c0.30(c.012)) 0.25 0.10 (.010 .004) max 0.80(.032) 0.20(.008) index area .0008 0.02 +.002 ? .0008 ? 0.02 +0.05 www.datasheet.co.kr datasheet pdf - http://www..net/
mb39a125/126 fujitsu limited all rights reserved. the contents of this document are subject to change without notice. customers are advised to consult with fujitsu sales representatives before ordering. the information, such as descriptions of function and application circuit examples, in this document are presented solely for the purpose of reference to show examples of operations and uses of fujitsu semiconductor device; fujitsu does not warrant proper operation of the device with respect to use based on such information. when you develop equipment incorporating the device based on such information, you must assume any responsibility arising out of such use of the information. fujitsu assumes no liability for any damages whatsoever arising out of the use of the information. any information in this document, including descriptions of function and schematic diagrams, shall not be construed as license of the use or exercise of any intellectual property right, such as patent right or copyright, or any ot her right of fujitsu or any third party or does fujitsu warrant non-in fringement of any third-party?s intellectual property right or othe r right by using such information. fujitsu assumes no liability for any infringement of the intellectual property rights or other rights of third parties which would result from the use of information contained herein. the products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremel y high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, ai rcraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon syst em), or (2) for use requiring extremely high reliability (i.e., su bmersible repeater and artificial satellite). please note that fujitsu will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products. any semiconductor devices have an inherent chance of failure. you must protect against injury, damage or loss from such failures by incorporating safety design m easures into your facility and equipment such as redundancy, fi re protection, and prevention of over-current levels and other abnormal operating conditions. if any products described in this document represent goods or technologies subject to certain restrictions on export under the foreign exchange and foreign trade law of japan, the prior authorization by japanese government will be required for export of those products from japan. f0511 ? 2004 fujitsu limited printed in japan www.datasheet.co.kr datasheet pdf - http://www..net/


▲Up To Search▲   

 
Price & Availability of 39A126

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X